Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges

نویسندگان

  • Makoto Takamura
  • Hajime Okamoto
  • Kazuaki Furukawa
  • Hiroshi Yamaguchi
  • Hiroki Hibino
چکیده

Graphene-based nanoelectromechanical systems (NEMS) have high future potential to realize sensitive mass and force sensors owing to graphene’s low mass density and exceptional mechanical properties. One of the important remaining issues in this field is how to achieve mechanical resonators with a high quality factor (Q). Energy dissipation in resonators decreases Q, and suppressing it is the key to realizing sensitive sensors. In this article, we review our recent work on energy dissipation in doubly-clamped and circular drumhead graphene resonators. We examined the temperature (T) dependence of the inverse of a quality factor (Q−1) to reveal what the dominant dissipation mechanism is. Our doubly-clamped trilayer resonators show a characteristic Q−1-T curve similar to that observed in monolayer resonators: Q−1 ∝ T2 above ∼100 K and ∝ T0.3 below ∼100 K. By comparing our results with previous experimental and theoretical results, we determine that the T2 and T0.3 dependences can be attributed to tensile strain induced by clamping metals and vibrations at the free edges in doubly-clamped resonators, respectively. The Q−1-T curve in our circular drumhead resonators indicates that removing free edges and clamping metal suppresses energy dissipation in the resonators, resulting in a linear T dependence of Q−1 in a wide temperature range.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High, size-dependent quality factor in an array of graphene mechanical resonators.

Graphene's unparalleled strength, stiffness, and low mass per unit area make it an ideal material for nanomechanical resonators, but its relatively low quality factor is an important drawback that has been difficult to overcome. Here, we use a simple procedure to fabricate circular mechanical resonators of various diameters from graphene grown by chemical vapor deposition. In addition to highly...

متن کامل

Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout.

We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f = 5-6 GHz producing modulatio...

متن کامل

Particle number scaling for diffusion-induced dissipation in graphene and carbon nanotube nanomechanical resonators

When a contaminant diffuses on the surface of a nanomechanical resonator, the motions of the two become correlated. Despite being a high-order effect in the resonator-particle coupling, such correlations affect the system dynamics by inducing dissipation of the resonator energy. Here, we consider this diffusion-induced dissipation in the cases of multiple particles adsorbed on carbon nanotube a...

متن کامل

Viscous Dissipation Impact on Free Convection Flow of Cu-water Nanofluid in a Circular Enclosure with Porosity Considering Internal Heat Source

In this work, free convection of Cu-water nanofluid in an enclosure by considering internally heat generated in the porous circular cavity and the impacts of viscous dissipation are numerically evaluated by control volume finite element method (CVFEM). The outer and inner sides of the circular porous enclosure are maintained at a fixed temperature while insulating the other two walls. The impac...

متن کامل

A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors.

Owing to its unique electrical, thermal, and mechanical properties, graphene has attracted great attention in various application areas, such as energy-storage materials, [ 1–3 ] free-standing paper-like materials, [ 4–6 ] polymer composites, [ 7–9 ] liquid crystal devices, [ 10 ] and mechanical resonators. [ 11 , 12 ] Approaches for preparing graphene include micromechanical cleavage, [ 11 , 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016